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Emerging Technologies Workshop : 
Network Programmability with Cisco APIC-EM
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1.1 Devnet
1.2 SDN
1.3 The APIC-EM

2.0 Programming the APIC-EM REST API

1.0 Network Programmability

2.1 REST
2.2 The APIC-EM API
2.3 Authentication
2.4 Lab 1 : Getting a Service Ticket with Python
2.5 Lab 2 : Create a host inventory in Python
2.6 Lab 3 : Create a network-device inventory in Python
2.7 Lab 4 : Path Trace
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• Explain how the Cisco APIC-EM enhances network management and 
performance software defined networking (SDN) and network 
programmability.

• Create an inventory of network devices by using the APIC-EM REST 
API.

• Create Python software tools for working with the APIC-EM API.

Please note: You are NOT expected become software developers or 
network programmers - yet!

Workshop Objectives
At the end of this workshop you will be able to:
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1.0 Network Programmability
1.1 Devnet
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Everything 

becomes 

software-based

Everything 

generates 

data

Everything 

needs to be 

secured

Everything             
can be 

automated

Everything 

becomes 

connected

ProgrammabilityNetworking Security

Why are we here?
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Building an Industry Ecosystem with DevNet

Developer 
as the 
customer

Catalyze & 
Accelerate 
Digitization

Vibrant Developer 
Ecosystem

Cisco’s portfolio as a Platform for InnovationCisco’s portfolio as a Platform for InnovationCisco’s portfolio as a Platform for Innovation

IoT SDN Cloud Collaboration Open SourceSecurity Data Center DevOps Service

Cisco’s Developer 
Community and Innovation 

Ecosystem

Cisco’s Developer 
Community and Innovation 

Ecosystem

Enabling developers
and learners

https://developer.cisco.com/
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DevNet Discover Learning 
Tracks

https://learninglabs.cisco.com/tracks/devnet-beginner
• Overview & DevNet Resources Beginner
https://learninglabs.cisco.com/tracks/devnet-beginner/devnet-beginner-overview/01-
intro-01-intro-to-devnet/step/1

• Intro to Coding Fundamentals
https://learninglabs.cisco.com/tracks/devnet-beginner/fundamentals/intro-to-
git/step/1

• Beginning APIs - Using Spark 
https://learninglabs.cisco.com/tracks/devnet-beginner/beginning-apis/00-prep-02-
overview-of-rest-apis/step/1

• Network Programmability
https://learninglabs.cisco.com/tracks/devnet-beginner/network-
programmability/networking-101-the-basics/step/1

Introduction to DevNet Track

Introduction
to DevNet

Introduction
to DevNet

Network 
Programmability
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1.0 Network Programmability
1.2 SDN
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SDN: Control Plane and Data Plane
Control Plane

Data Plane

ingress egress

Hardware Purpose Example Processes

Device 
CPU

makes decisions about where 
traffic is sent 

routing protocols, spanning 
tree, AAA, SNMP, CLI

Hardware Purpose Example Processes

Dedicated 
ASICs

forwards traffic to the 
selected destination

packet switching, L2 switching, 
MPLS, QOS, policies, ACLs
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Traditional and SDN Architectures

Data 
Plane

Control 
Plane

Control 
Plane

Data 
Plane

Control 
Plane

Control 
Plane

Data 
Plane

Control 
Plane

Control 
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Device 1 Device 2 Device 3

Traditional Architecture

Data Data Data 
Plane
Data 
Plane

Data Data 
Plane
Data 
Plane

Control Plane
(SDN Controller)

Control Plane
(SDN Controller)

Data Data 
Plane
Data 
Plane

Device 1 Device 2 Device 3

SDN Architecture 

OpenFlow is a protocol between SDN controllers and network 
devices, as well as a specification of the logical structure of the 
network switch functions.
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Application 
Programming Interfaces 
(APIs) enable control 
between layers.

Network-wide Abstractions Simplify the Network
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SDN Framework

SDN Controller

Northbound APINorthbound API

Southbound APISouthbound API

Physical Topology
(data plane)

Applications
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SDN : Cisco point of view in the Data Center : ACI

14© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential

Nexus !

Note : This workshop 
is about APIC-EM, 
not about ACI
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SDN : Cisco point of view in the campus : APIC-EM
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Many ISR routers, 
switches, WLCs 
are APIC-EM 
compatible
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1.0 Network Programmability
1.3 The APIC-EM



17© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential

What is the APIC-EM?

The Cisco Application Policy Infrastructure Controller Enterprise Module 
(APIC-EM):
• A Software-Defined Networking (SDN) controller for enterprise networks 
• A virtual, software-only, or physical appliance (>32GB RAM, 6 cores,...)
• Creates an intelligent, open, programmable network with open APIs
• Can transform business-intent policies into dynamic network 

configuration
• Provides a single point for network-wide automation and control
•  The built in applications IWAN, Path Trace, Plug and Play, EasyQoS 

support enterprise routers, switches and Access Points
• All capabilities are exposed via a REST API
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APIC-EM – Log in

https://sandboxapicem.cisco.com/

User: devnetuser
P/W: Cisco123!
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APIC-EM Home Page

Applications

API 
documentation

Services
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APIC-EM Applications

20

• Plug-and-Play (PnP)
Provides a unified approach to provision enterprise networks comprised of Cisco 
routers, switches, and wireless access points with a near-zero-touch deployment 
experience.

• Easy QoS
Provides a simple way to classify and assign application priority.

• Intelligent WAN (IWAN) Application
Simplifies WAN deployments by providing an intuitive, policy-based interface that 
helps IT abstract network complexity and design for business intent. 

• Path Trace
Greatly eases and accelerates the task of connection monitoring and 
troubleshooting.
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APIC-EM : What can it be used for ?
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APIC-EM Topology Page

example topology
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1.1 Devnet
1.2 SDN
1.3 The APIC-EM

2.0 Programming the APIC-EM REST API

1.0 Network Programmability

2.1 REST
2.2 The APIC-EM API
2.3 Authentication
2.4 Lab 1 : Getting a Service Ticket with Python
2.5 Lab 2 : Create a host inventory in Python
2.6 Lab 3 : Create a network-device inventory in Python
2.7 Lab 4 : Path Trace
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2.0 Programming the APIC-EM 
REST API

2.1 REST
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● A web service is a way for two systems to communicate through a 
defined interface.  Expl of web services : REST (Representational 
State Transfer) and SOAP (Simple Object Access Protocol)

● REST is an architecture style for designing networked applications.

● In REST, HTTP is used to communicate between 2 machines

● REST is a lightweight alternative to RPC, SOAP, Corba, …

● Example :  
GET http://www.acme.com/phonebook/UserDetails/12345

What is a web service?
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• Use HTTP protocol methods and transport

• API endpoints exist as server processes that are accessed through 
URIs

• Webpages present data and functionality in human-machine 
interaction driven by a user.

• APIs present data and functionality in machine-machine interactions 
driven by software.

REST APIs

Directory of Public APIs: https://www.programmableweb.com/apis/directory
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What is so great about REST*?

27

• Hosts
• Devices
• Users
• + more

Easy to use:

• In mobile apps
• In console apps
• In web apps

How does this work?

Cisco APIC-EM REST APIs

*representational state transfer (REST).
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28
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2.0 Programming the APIC-EM 
REST API

2.2 The APIC-EM API
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How does this work?

8

3rd Party 
App

Request

Response

3rd Party 
App

3rd Party 
App

GET http://{APIC-EMController}/api/v1/host

List of Hosts returned in JSON

Request

Response
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Anatomy of a REST Request

31

Method

– GET, POST, PUT, DELETE

URL

– Example: http://{APIC-EMController}/api/v1/host

Authentication 

– Basic HTTP, OAuth, none, Custom

Custom Headers

– HTTP Headers

– Example: Content-Type: application/JSON

Request Body

– JSON or XML containing data needed to complete request

REST requests require the following elements (requirements may differ 
depending on the API):
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What is in the Response?

32

HTTP Status Codes

– http://www.w3.org/Protocols/HTTP/HTRESP.html

– 200 OK

– 201 Created

– 401, 403 Authorization error

– 404 Resource not found

– 500 Internal Error

Headers

Body

– JSON

– XML
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JSON and XML
JSON XML
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APIC-EM Documentation
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APIC-EM Documentation
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2.0 Programming the APIC-EM 
REST API

2.3 Authentication
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• Basic HTTP: The username and password are passed to the server in an 
encoded string. 

• Token: A token is created and passed with each API call, but there is no 
session management and tracking of clients which simplifies interaction 
between the server and client. 

• OAuth: Open standard for HTTP authentication and session management. 
Creates an access token associated to a specific user that also specifies the 
user rights. The token is used to identify the user and rights when making APIs 
calls in order to verify access and control. 

APIC-EM uses Token for authentication management. The APIC-EM calls this 
token a service ticket.

What about authentication?

37
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• Basic HTTP: The username and password are passed to the server in an 
encoded string. The server must keep track of this session – not scalable...

Basic HTTP

38



39© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential

● Stateless – no need to keep track of every user

● Token must be passed in every request from the client

● Token will be placed in the http header

Token based authentication

39
© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential

Analogy with 
conference 
badge...

Stateful : session-id must be kept on both ends Stateless : token is signed by server and checked at each request 
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OAUTH

40
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Client application delegates authentication to 
authentication provider (twitter/google/
facebook/spark/...)
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APIC-EM Swagger Documentation
API
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POST /ticket 
Swagger Try it out!

1. Click Model Schema
2. Click the yellow box 

under Model Schema
3. Enter the DevNet 

Sandbox APIC-EM 
credentials between the 
quotes.

4. Click the “Try it out !” 
button.

5. If successful, the ticket 
number will be in the 
response body JSON.

response body JSON

service ticket
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2.0 Programming the APIC-EM REST API
2.4 LAB1 :  Getting a Service Ticket with Python

2.4.1 Use POSTMAN to get Service Ticket

2.4.2 Use Python to get Service Ticket
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• An HTTP client for MacOS, Linux, Windows that 
provides an easy way to interact with REST  APIs.

• Allows for headers to be easily constructed.

• Displays request status code and response data.

• Frequently used requests can be saved in tabs, 
history, or collections for reuse.

Postman
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• We need to disable SSL 
certificate checking. This can 
cause requests to fail.

• Open File>Settings.

• Under Request, set SSL 
Certificate Verification to 
"OFF"

Step 1: Configure Postman
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Postman Features

• History

• Tabs

• Collections

• Presets

• Code

• Environments

• Collaboration

request

response
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Step 2 : Using Postman to get a Service Ticket: 
Enter Required Information and Send Request

47

method URI Headers

BodyBody JSON: {"username": "devnetuser", "password": "Cisco123!"}
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View the Response

48

response body

authentication token

(service ticket number)
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Overview of the Request Process

1. Build request
• Method
• URL
• Headers
• Body
• Authentication

2. Send request
3. Evaluate response

• Response code
• Desired data features

Build
Request 

Components

Send 
Request

Evaluate
Response
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2.0 Programming the APIC-EM REST API
2.4 LAB1 :  Getting a Service Ticket with Python

2.4.1 Use POSTMAN to get Service Ticket

2.4.2 Use Python to get Service Ticket
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Python IDLE 
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Python dictionary
 ipAddress = {"R1":"10.1.1.1","R2":"10.2.2.1","R3":"10.3.3.1"}

print(ipAddress["R1"])        
10.1.1.1

ipAddress["R1"]="10.0.0.1"

Python for loop
 devices=["R1","R2","R3","S1","S2"]
 for item in devices:

print(item)
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Lab 1: Getting a Service Ticket with Python 

1. Document code with initial comment block.
2. Import required modules: json and requests
3. Disable SSL certificate warnings

"""
01_get_ticket.py
This script retrieves an authentication token from APIC-EM and prints out 
it's value. It is standalone, there is no dependency.
MBenson
11/12/2017
"""
import json       
import requests

requests.packages.urllib3.disable_warnings()
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post_url = 'https://sandboxapicem.cisco.com/api/v1/ticket'

headers = {'content-type': 'application/JSON'}

body_json = {
    'username': 'devnetuser',
    'password': 'Cisco123!'
}

Lab 1: Getting a Service Ticket with Python: 
Build the Request Components

Note: This is exactly what we provided to Postman for the request.

1. Create a string variable for URL.Create a string variable for URL.

2. Create header.

3. Provide body requirements.

1. Create a string variable for URL.

2. Create header.

3. Provide body requirements.
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1. Create a Python object to hold the response to the 
request.

2. Provide the variables for the request to the POST method 
of the requests module.

3.  json.dumps() encodes a Python object as JSON.
This line of code sends the request using a POST method to the URL of APIC-
EM ticket endpoint. The response that is returned by the API is stored in the 
resp variable.

resp = requests.post(post_url, json.dumps(body_json),headers=headers,verify=False)

Lab 1: Getting a Service Ticket with Python:
Send the Request
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About the JSON

response_json = resp.json()
serviceTicket = response_json['response']['serviceTicket']

https://codebeautify.org/jsonviewer
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Lab 1: Getting a Service Ticket with Python:
Evaluate the Response

1. Create object with response code of request.
2. Display response code.
3. Decode the JSON resp variable into a python object and store in response_json 

object.
4. Extract the service ticket value from the object.
5. Display service ticket value.
6. Save your file as get_ticket.py and run the code.

status = resp.status_code 
print ("Ticket request status: " + status\n)

response_json = resp.json()

serviceTicket = response_json['response']['serviceTicket'] 

print("The service ticket number is: " + serviceTicket)
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Lab 1: Getting a Service Ticket with Python:
Create a Function from the Program

You will convert your program into a function that can be reused in the 
future. It will go into a file of APIC-EM utility functions called 
my_apic_em_functions.py

Requirements for the function:
1. Defined with def get_ticket()
2. All subsequent lines of code indented an additional four spaces.
3. Function should return the service ticket number for use in other 

programs.
return serviceTicket
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• We will create a small program that requests and displays a table of 
hosts on the network. We convert this to a function and add it to our 
functions file.

• We will reuse code to create a small program that requests and 
displays a table of network devices on the network. We convert this to 
a function and add it to our functions file.

• We will complete code in the Path Trace application and use our 
functions in that program.

What's next?
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2.0 Programming the APIC-EM REST API
2.5 Lab 2 :  Create a host inventory in Python

2.5.1 Use POSTMAN to get host inventory
2.5.2 Use Python to get host inventory
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add your service 
ticket number

/host API endpoint/host API endpoint/host API endpoint

add new 
tab

Step 1 : Setup the Postman Request

1.1.1. Create a new tab select the method, URI, and Content-Type.Create a new tab select the method, URI, and Content-Type.Create a new tab select the method, URI, and Content-Type.
2. Run the Postman tab that obtains a service ticket.
3. Build the REST header with Content-Type and service ticket 

number as the value for X-Auth-Token
4. Send request, view response.

1. Create a new tab select the method, URI, and Content-Type.
2. Run the Postman tab that obtains a service ticket.
3. Build the REST header with Content-Type and service ticket 

number as the value for X-Auth-Token
4. Send request, view response.
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We want to display a small table of 
hosts, including the hostIP and 
hostType values for each host.

Explore the Response JSON

response[0]['hostIP']
response[0]['hostType']

Step 2 : Evaluate the Response
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2.0 Programming the APIC-EM REST API
2.5 Lab 2 :  Create a host inventory in Python

2.5.1 Use POSTMAN to get host inventory
2.5.2 Use Python to get host inventory
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Lab 2 : Create Host Inventory in Python
'''
02_get_host.py
gets an inventory of hosts from \host endpoint
November, 2017
'''
import requests
import json
import sys
from tabulate import *
from my_apic_em_functions import *

1. Document
2. Import required modules

Note that the Python file that contains your service ticket function is 
imported for use here. The name of the functions file will vary depending 
on whether you are using your own file or the provided solution file.
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Lab 2 : Create Host Inventory in Python
Build Request Components

post_url = "https://sandboxapicem.cisco.com/api/v1/host"

ticket = get_ticket()
headers = {'content-type':'application/json','X-Auth-Token':ticket}

Note that the get_ticket() function that you created earlier is reused 
here and the value is supplied to the headers object.
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Lab 2 : Create Host Inventory in Python
Make the Request and Handle Errors

try:
    resp = requests.get(post_url,headers=headers,params='',verify = False)
    response_json = resp.json() # Get the json-encoded content from response
    print ('Status of /host request: ',str(resp.status_code))
except:
    print ('Something is wrong with GET /host request!')
    sys.exit()

1. Request is made with get() method of the requests module.
2. A try: except: structure is used to handle errors. If an exception 

is encountered in the try: code, the except: code executes.
3. Messages are displayed for the status of the request.
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Lab 2 : Create Host Inventory in Python
Evaluate the Response

host_list=[]
i=0
for item in response_json['response']:
    i+=1
    host_list.append([i,item['hostType'],item['hostIp'])

print (tabulate(host_list,headers=['Number','Type','IP'],tablefmt="rst"))

1. The for: loop iterates through the objects in response_json[response] key, 
which corresponds to each host.

2. The data for the host is put in the variable item.
3. This variable contains all the keys for the host.
4. We extract the "hostType", and "hostIp" for each host.
5. Each iteration of the loop appends this information to a new line in the variable.
6. We pass the host_list variable to tabulate to be formatted and print the result.
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Lab 2 : Create Host Inventory in Python
Create the Function

def get_host():
    post_url = "https://sandboxapicem.cisco.com/api/v1/host"

    ticket = get_ticket()
headers = {"content-type" : "application/json","X-Auth-Token": ticket}

    try:
        resp = requests.get(post_url,headers=headers,params="",verify = False)
        response_json = resp.json()

print ("Status of /host request: ",str(resp.status_code))
    except:
        print ("Something is wrong with GET /host request!")
        sys.exit()
   

host_list=[]
    i=0
    for item in response_json["response"]:
        i+=1
        host_list.append([i,item["hostType"],item["hostIp"]])

    print (tabulate(host_list,headers=['number','type','host IP'],tablefmt='rst'))

1. Copy your program 
into the functions file. 

2. define the function as 
get_host()

3. Indent everything by 
four additional spaces

4. Save the functions file.
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2.0 Programming the APIC-EM REST API
2.6 Lab 3 :  Create a network-device inventory in Python
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1. Save your get_host.py file as get_device.py.

2. Go to the APIC-EM GUI and open the Swagger page for the 
inventory/network-device

3. Click try it and look at the returned JSON.

4. We want to access and print 'type' and 'managementIpAddress' 
instead of "hostType" and "hostIpAdress".

5. Inspect the code and make the substitutions everywhere they are 
required.

6. Save the file and test. Add the function get_device() to your 
functions file.

Lab 3: Create a Network Device Inventory in Python
Replicate your work for the /network-device Inventory endpoint.
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2.0 Programming the APIC-EM REST API
2.6 Lab 4 : Path Trace Application
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The Path Trace Application
1. Open and run the 04_path_trace_sol.py file.
2. From the list of devices, enter source and destination IP 

addresses.
3. The application does the following:

a) Obtains a service ticket from the APIC-EM /ticket endpoint.
b) Obtains and displays an inventory of hosts from the /hosts endpoint
c) Obtains and displays an inventory of network devices from the 

/network-devices endpoint
d) Requests source and destination IP addresses for the Path Trace 

from the user.
e) Requests the Path Trace from the /flow-analysis endpoint.
f) Monitors the status of the Path Trace until it is complete.
g) Displays some of the results of the completed Path Trace.

4. We are going to build this!
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• You will work from partially completed code in the 
04_path_trace.py file.

• Copy and paste from what you have already completed.

• Consult the solution files.

• Seek assistance from the workshop community if you are 
stuck.

• Coders collaborate, so should you!

Lab 4: Coding the Path Trace Application: Process
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Lab 4: Coding the Path Trace Application: 
About the working code file
• Open the 04_path_trace.py work file in IDLE.
• The code is divided into six sections. The lab references each 

section.
• You are directed to complete or supply statements in the code.
• Some material is new. The lab document provides information 

regarding what is required.
• You are working on a functioning application. Sometimes it is 

necessary to use code that is more advanced than your current skill 
level. You are not expected to understand that code, although it can 
be explained at a later time if you wish.
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• In IDLE, create a new Python file called test.py.

• Save it in the same folder as your other lab files.

• As you complete a section of code, copy and 
paste it into this file, save, and run it.

Lab 4: Coding the Path Trace Application: 
Testing your code…
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Lab 4: Path Trace Code: Section 1: Setup 
the Environment

#==================================================
# Section 1. Setup the environment and variables required 
to interact with the APIC-EM
#===================================================
#+++++++++++Add Values+++++++++++++++
#import modules

#disable SSL certificate warnings

#++++++++++++++++++++++++++++++++++++

#+++++++++++Add Values+++++++++++++++
# Path Trace API URL for flow_analysis endpoint
post_url =              #URL of API endpoint
# Get service ticket number using imported function
ticket =                # Add function to get service ticket
# Create headers for requests to the API
headers =               # Create dictionary containing headers for 
the request
#++++++++++++++++++++++++++++++++++++

post_url =              post_url =              

ticket =                # Add function to get service ticketticket =                # Add function to get service ticket

headers =               # Create dictionary containing headers for headers =               # Create dictionary containing headers for 

Add code where 
indicated to setup the 
code environment and 
build the request 
components.
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Use your get_host() 
and get_devices() 
functions here.

Lab 4: Path Trace 
Code Section 2: Display list of hosts and devices

#============================
# Section 2. Display list of devices and IPs by calling 
get_host() and get_devices()
#============================

#+++++++++++Add Values+++++++++++++++
print('List of hosts on the network: ')
# Add function to display hosts

print('List of devices on the network: ')
# Add function to display network devices

#++++++++++++++++++++++++++++++++++++

print('List of devices on the network: ')
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Lab 4: Path Trace 
Code Section 3: Get Source and Destination IP Addresses from User

while True:
#+++++++++++Add Values+++++++++++++++
s_ip =                    # Request user input for source IP address
d_ip =                    # Request user input for destination IP address
#++++++++++++++++++++++++++++++++++++
#Various error traps should be completed here - POSSIBLE CHALLENGE

if s_ip != '' or d_ip != '':
path_data = {

  "sourceIP": s_ip, 
  "destIP": d_ip
  }

break  #Exit loop if values supplied
else:

print("\n\nYOU MUST ENTER IP ADDRESSES TO CONTINUE.\nUSE CTRL-C TO QUIT\n")
continue  #Return to beginning of loop and repeat

s_ip =                    s_ip =                    
d_ip =                    
#++++++++++++++++++++++++++++++++++++
d_ip =                    
#++++++++++++++++++++++++++++++++++++#++++++++++++++++++++++++++++++++++++

variable = input("prompt:  ")
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Lab 4: Path Trace 
Code Section 4: Initiate the Path Trace and get the Flow 
Analysis ID
#============================
# Section 4. Initiate the Path Trace and get the flowAnalysisId
#============================

#+++++++++++Add Values+++++++++++++++
# Post request to initiate Path Trace
path =         #Convert the path_data to JSON using json.dumps()
resp =         #Make the request. Construct the POST request to the API

# Inspect the return, get the Flow Analysis ID, put it into a variable
resp_json = resp.json()
flowAnalysisId =       # Assign the value of the flowAnalysisID key of resp_json.
#+++++++++++++++++++++++++++++++++++++

print('FLOW ANALYSIS ID: ' + flowAnalysisId)

path =         path =         

flowAnalysisId =       # Assign the value of the flowAnalysisID key of resp_json.flowAnalysisId =       # Assign the value of the flowAnalysisID key of resp_json.

resp =         resp =         
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Lab 4: Path Trace 
Code Section 5: Check status of Path Trace request - 1

#============================
# Section 5. Check status of Path Trace request, output results when 
COMPLETED
#============================

#initialize variable to hold the status of the path trace
status = ""

#+++++++++++Add Values+++++++++++++++
#Add Flow Analysis ID to URL in order to check the status of this 
specific path trace
check_url =           #Append the /flowAnalyisId to the flow 
analysis end point URL that was created in Section 1
#++++++++++++++++++++++++++++++++++++

check_url =           check_url =           
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Lab 4: Path Trace 
Code Section 5: Check status of Path Trace request - 2
checks = 0 #variable to increment within the while loop. Will trigger exit from loop after x iterations

while status != 'COMPLETED':
checks += 1
r = requests.get(check_url,headers=headers,params="",verify = False)
response_json = r.json()
#+++++++++++Add Values+++++++++++++++
status =            # Assign the value of the status of the path trace request from response_json
#++++++++++++++++++++++++++++++++++++

#wait one second before trying again
time.sleep(1)
if checks == 15: #number of iterations before exit of loop; change depending on conditions

print('Number of status checks exceeds limit. Possible problem with Path Trace.')
#break
sys.exit() 

elif status == 'FAILED':
print('Problem with Path Trace')
#break
sys.exit()

print('REQUEST STATUS: ' + status) #Print the status as the loop runs

status =            status =            # Assign the value of the status of the path trace request from response_json
#++++++++++++++++++++++++++++++++++++
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Lab 4: Path Trace 
Code Section 5: Check status of Path Trace request - 3 
JSON Status Key

response_json["response"]["request"]["status"]
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Lab 4: Path Trace 
Code Section 6: Display Results
#============================
# Section 6. Display results
#============================

# Create required variables
#+++++++++++Add Values+++++++++++++++
path_source =            #Assign the source address from the trace from response_json
path_dest =              #Assign the destination address from the trace from response_json
networkElementsInfo =          #Assign the list of all network element dictionaries from response_json
#+++++++++++++++++++++++++++++++++++++

#Assign the list of all network element dictionaries from response_json#Assign the list of all network element dictionaries from response_json

Supplying these values requires parsing the Path Trace JSON that 
is has been converted to Python objects and is stored in 
response_json. We will explore an example of the Path Trace 
JSON now.

path_source =            #Assign the source address from the trace from response_jsonpath_source =            #Assign the source address from the trace from response_json
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1. Open the json_data.json file that is in the folder with 
the lab Python files.

2. Copy the entire contents of the file.

3. Open JSON Viewer and paste the JSON in the left-hand 
pane.

4. View as a tree.

5. Collapse all levels.

Lab 4: Path Trace
JSON Practice - View Tree
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Lab 4 Path Trace: JSON Practice - Tree View
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Lab 4: Path Trace
JSON Practice - Load Variables

1. Import the json module.
2. Open the path_trace_json.json file, convert it to Python objects, and 

assign the result to a variable called json_data as shown above.
3. Save and run the program.
4. Display the contents of json_data in the shell. This is what the imported 

and converted JSON looks like to Python
5. Display the values of different keys in the json. Example:

print(json_data['response']['request'])

import json
json_data=json.load(open('path_trace_json.json'))

>>> print(json_data)
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Lab 4: JSON Practice -  Accessing Data in the 
Response

json_data['response']['networkElementsInfo'][2]['ip']json_data['response']['networkElementsInfo'][2]['ip']json_data['response']['networkElementsInfo'][2]['ip']

json_data['response']['request']['sourceIP')json_data['response']['request']['sourceIP')json_data['response']['request']['sourceIP')

json_data['response']['request']['destIP']json_data['response']['request']['destIP']json_data['response']['request']['destIP']

json_data holds the converted JSON reply from 
the Path Trace endpoint that is represented in the 
JSON Viewer tree.
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APIC-EM Tools Github Collection  

88

Can be imported into Postman 
as files, or directly from URLs. 
See the README.md file for 
more information.

Note: Before posting any code your 
own repository, remove any 
confidential information from the code 
and replace it with comments or 
descriptive placeholder text.

https://github.com/CiscoDevNet/apic-em-samples-aradford/tree/master/tools/postman
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Next steps…

• Go to DevNet and investigate:
• The DevNet Cisco Community

• The DevNet Introduction to DevNet interactive course track

• The APIC-EM Sandbox and Swagger API documentation
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Thank you for attending the 
workshop!


