
Stichting NIOC

Versiedatum: 02-04-2023

Stichting NIOC en de NIOC kennisbank

Stichting NIOC (www.nioc.nl) stelt zich conform zijn statuten tot doel: het realiseren van

congressen over informatica onderwijs en voorts al hetgeen met een en ander rechtstreeks of

zijdelings verband houdt of daartoe bevorderlijk kan zijn, alles in de ruimste zin des woords.

De stichting NIOC neemt de archivering van de resultaten van de congressen voor zijn rekening.

De website www.nioc.nl ontsluit onder "Eerdere congressen" de gearchiveerde websites van

eerdere congressen. De vele afzonderlijke congresbijdragen zijn opgenomen in een kennisbank

die via dezelfde website onder "NIOC kennisbank" ontsloten wordt.

Op dit moment bevat de NIOC kennisbank alle bijdragen, incl. die van het laatste congres

(NIOC2025, gehouden op donderdag 27 maart 2025 jl. en georganiseerd door Hogeschool

Windesheim). Bij elkaar zo’n 1500 bijdragen!

We roepen je op, na het lezen van het document dat door jou is gedownload, de auteur(s)

feedback te geven. Dit kan door je te registreren als gebruiker van de NIOC kennisbank. Na

registratie krijg je bericht hoe in te loggen op de NIOC kennisbank.

Het eerstvolgende NIOC vindt plaats in 2027 en wordt dan georganiseerd door HAN University

of Applied Sciences. Zodra daarover meer informatie beschikbaar is, is deze hier te vinden.

Wil je op de hoogte blijven van de ontwikkeling rond Stichting NIOC en de NIOC kennisbank,

schrijf je dan in op de nieuwsbrief via

www.nioc.nl/nioc-kennisbank/aanmelden nieuwsbrief

Reacties over de NIOC kennisbank en de inhoud daarvan kun je richten aan de beheerder:

R. Smedinga kennisbank@nioc.nl.

Vermeld bij reacties jouw naam en telefoonnummer voor nader contact.

01/19/18

Emerging Technologies Workshop :
Network Programmability with Cisco APIC-EM

2© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Traditional offering

Curriculum

Hands on
Labs

Assessment
s

PPTs

30
-7

0
h

ou
rs

Workshop offering

Curriculum

Hands on Labs

Assessments

PPTs +
Transcript

6-
8

 h
o

ur
s

Very comprehensive,
end to end, up to carrier
ready

From Buzzwords to Hello
World

3© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1.1 Devnet
1.2 SDN
1.3 The APIC-EM

2.0 Programming the APIC-EM REST API

1.0 Network Programmability

2.1 REST
2.2 The APIC-EM API
2.3 Authentication
2.4 Lab 1 : Getting a Service Ticket with Python
2.5 Lab 2 : Create a host inventory in Python
2.6 Lab 3 : Create a network-device inventory in Python
2.7 Lab 4 : Path Trace

4© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• Explain how the Cisco APIC-EM enhances network management and
performance software defined networking (SDN) and network
programmability.

• Create an inventory of network devices by using the APIC-EM REST
API.

• Create Python software tools for working with the APIC-EM API.

Please note: You are NOT expected become software developers or
network programmers - yet!

Workshop Objectives
At the end of this workshop you will be able to:

5© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1.0 Network Programmability
1.1 Devnet

6© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Everything

becomes

software-based

Everything

generates

data

Everything

needs to be

secured

Everything
can be

automated

Everything

becomes

connected

ProgrammabilityNetworking Security

Why are we here?

7© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Building an Industry Ecosystem with DevNet

Developer
as the
customer

Catalyze &
Accelerate
Digitization

Vibrant Developer
Ecosystem

Cisco’s portfolio as a Platform for InnovationCisco’s portfolio as a Platform for InnovationCisco’s portfolio as a Platform for Innovation

IoT SDN Cloud Collaboration Open SourceSecurity Data Center DevOps Service

Cisco’s Developer
Community and Innovation

Ecosystem

Cisco’s Developer
Community and Innovation

Ecosystem

Enabling developers
and learners

https://developer.cisco.com/

8© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

DevNet Discover Learning
Tracks

https://learninglabs.cisco.com/tracks/devnet-beginner
• Overview & DevNet Resources Beginner
https://learninglabs.cisco.com/tracks/devnet-beginner/devnet-beginner-overview/01-
intro-01-intro-to-devnet/step/1

• Intro to Coding Fundamentals
https://learninglabs.cisco.com/tracks/devnet-beginner/fundamentals/intro-to-
git/step/1

• Beginning APIs - Using Spark
https://learninglabs.cisco.com/tracks/devnet-beginner/beginning-apis/00-prep-02-
overview-of-rest-apis/step/1

• Network Programmability
https://learninglabs.cisco.com/tracks/devnet-beginner/network-
programmability/networking-101-the-basics/step/1

Introduction to DevNet Track

Introduction
to DevNet

Introduction
to DevNet

Network
Programmability

9© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1.0 Network Programmability
1.2 SDN

10© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

SDN: Control Plane and Data Plane
Control Plane

Data Plane

ingress egress

Hardware Purpose Example Processes

Device
CPU

makes decisions about where
traffic is sent

routing protocols, spanning
tree, AAA, SNMP, CLI

Hardware Purpose Example Processes

Dedicated
ASICs

forwards traffic to the
selected destination

packet switching, L2 switching,
MPLS, QOS, policies, ACLs

11© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Traditional and SDN Architectures

Data
Plane

Control
Plane

Control
Plane

Data
Plane

Control
Plane

Control
Plane

Data
Plane

Control
Plane

Control
Plane

Device 1 Device 2 Device 3

Traditional Architecture

Data Data Data
Plane
Data
Plane

Data Data
Plane
Data
Plane

Control Plane
(SDN Controller)

Control Plane
(SDN Controller)

Data Data
Plane
Data
Plane

Device 1 Device 2 Device 3

SDN Architecture

OpenFlow is a protocol between SDN controllers and network
devices, as well as a specification of the logical structure of the
network switch functions.

12© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Application
Programming Interfaces
(APIs) enable control
between layers.

Network-wide Abstractions Simplify the Network

13© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

SDN Framework

SDN Controller

Northbound APINorthbound API

Southbound APISouthbound API

Physical Topology
(data plane)

Applications

14© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

SDN : Cisco point of view in the Data Center : ACI

14© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Nexus !

Note : This workshop
is about APIC-EM,
not about ACI

15© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

SDN : Cisco point of view in the campus : APIC-EM

15© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Many ISR routers,
switches, WLCs
are APIC-EM
compatible

16© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1.0 Network Programmability
1.3 The APIC-EM

17© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

What is the APIC-EM?

The Cisco Application Policy Infrastructure Controller Enterprise Module
(APIC-EM):
• A Software-Defined Networking (SDN) controller for enterprise networks
• A virtual, software-only, or physical appliance (>32GB RAM, 6 cores,...)
• Creates an intelligent, open, programmable network with open APIs
• Can transform business-intent policies into dynamic network

configuration
• Provides a single point for network-wide automation and control
• The built in applications IWAN, Path Trace, Plug and Play, EasyQoS

support enterprise routers, switches and Access Points
• All capabilities are exposed via a REST API

18© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM – Log in

https://sandboxapicem.cisco.com/

User: devnetuser
P/W: Cisco123!

19© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Home Page

Applications

API
documentation

Services

20© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Applications

20

• Plug-and-Play (PnP)
Provides a unified approach to provision enterprise networks comprised of Cisco
routers, switches, and wireless access points with a near-zero-touch deployment
experience.

• Easy QoS
Provides a simple way to classify and assign application priority.

• Intelligent WAN (IWAN) Application
Simplifies WAN deployments by providing an intuitive, policy-based interface that
helps IT abstract network complexity and design for business intent.

• Path Trace
Greatly eases and accelerates the task of connection monitoring and
troubleshooting.

21© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM : What can it be used for ?

21© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

22© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Topology Page

example topology

23© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1.1 Devnet
1.2 SDN
1.3 The APIC-EM

2.0 Programming the APIC-EM REST API

1.0 Network Programmability

2.1 REST
2.2 The APIC-EM API
2.3 Authentication
2.4 Lab 1 : Getting a Service Ticket with Python
2.5 Lab 2 : Create a host inventory in Python
2.6 Lab 3 : Create a network-device inventory in Python
2.7 Lab 4 : Path Trace

24© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM
REST API

2.1 REST

25© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

● A web service is a way for two systems to communicate through a
defined interface. Expl of web services : REST (Representational
State Transfer) and SOAP (Simple Object Access Protocol)

● REST is an architecture style for designing networked applications.

● In REST, HTTP is used to communicate between 2 machines

● REST is a lightweight alternative to RPC, SOAP, Corba, …

● Example :
GET http://www.acme.com/phonebook/UserDetails/12345

What is a web service?

26© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• Use HTTP protocol methods and transport

• API endpoints exist as server processes that are accessed through
URIs

• Webpages present data and functionality in human-machine
interaction driven by a user.

• APIs present data and functionality in machine-machine interactions
driven by software.

REST APIs

Directory of Public APIs: https://www.programmableweb.com/apis/directory

27© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

What is so great about REST*?

27

• Hosts
• Devices
• Users
• + more

Easy to use:

• In mobile apps
• In console apps
• In web apps

How does this work?

Cisco APIC-EM REST APIs

*representational state transfer (REST).

28© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

28

28© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

29© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM
REST API

2.2 The APIC-EM API

30© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

How does this work?

8

3rd Party
App

Request

Response

3rd Party
App

3rd Party
App

GET http://{APIC-EMController}/api/v1/host

List of Hosts returned in JSON

Request

Response

31© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Anatomy of a REST Request

31

Method

– GET, POST, PUT, DELETE

URL

– Example: http://{APIC-EMController}/api/v1/host

Authentication

– Basic HTTP, OAuth, none, Custom

Custom Headers

– HTTP Headers

– Example: Content-Type: application/JSON

Request Body

– JSON or XML containing data needed to complete request

REST requests require the following elements (requirements may differ
depending on the API):

32© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

What is in the Response?

32

HTTP Status Codes

– http://www.w3.org/Protocols/HTTP/HTRESP.html

– 200 OK

– 201 Created

– 401, 403 Authorization error

– 404 Resource not found

– 500 Internal Error

Headers

Body

– JSON

– XML

33© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

JSON and XML
JSON XML

34© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Documentation

35© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Documentation

36© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM
REST API

2.3 Authentication

37© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• Basic HTTP: The username and password are passed to the server in an
encoded string.

• Token: A token is created and passed with each API call, but there is no
session management and tracking of clients which simplifies interaction
between the server and client.

• OAuth: Open standard for HTTP authentication and session management.
Creates an access token associated to a specific user that also specifies the
user rights. The token is used to identify the user and rights when making APIs
calls in order to verify access and control.

APIC-EM uses Token for authentication management. The APIC-EM calls this
token a service ticket.

What about authentication?

37

38© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• Basic HTTP: The username and password are passed to the server in an
encoded string. The server must keep track of this session – not scalable...

Basic HTTP

38

39© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

● Stateless – no need to keep track of every user

● Token must be passed in every request from the client

● Token will be placed in the http header

Token based authentication

39
© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Analogy with
conference
badge...

Stateful : session-id must be kept on both ends Stateless : token is signed by server and checked at each request

40© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

OAUTH

40
40© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Client application delegates authentication to
authentication provider (twitter/google/
facebook/spark/...)

41© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Swagger Documentation
API

42© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

POST /ticket
Swagger Try it out!

1. Click Model Schema
2. Click the yellow box

under Model Schema
3. Enter the DevNet

Sandbox APIC-EM
credentials between the
quotes.

4. Click the “Try it out !”
button.

5. If successful, the ticket
number will be in the
response body JSON.

response body JSON

service ticket

43© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM REST API
2.4 LAB1 : Getting a Service Ticket with Python

2.4.1 Use POSTMAN to get Service Ticket

2.4.2 Use Python to get Service Ticket

44© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• An HTTP client for MacOS, Linux, Windows that
provides an easy way to interact with REST APIs.

• Allows for headers to be easily constructed.

• Displays request status code and response data.

• Frequently used requests can be saved in tabs,
history, or collections for reuse.

Postman

45© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• We need to disable SSL
certificate checking. This can
cause requests to fail.

• Open File>Settings.

• Under Request, set SSL
Certificate Verification to
"OFF"

Step 1: Configure Postman

46© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Postman Features

• History

• Tabs

• Collections

• Presets

• Code

• Environments

• Collaboration

request

response

47© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Step 2 : Using Postman to get a Service Ticket:
Enter Required Information and Send Request

47

method URI Headers

BodyBody JSON: {"username": "devnetuser", "password": "Cisco123!"}

48© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

View the Response

48

response body

authentication token

(service ticket number)

49© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Overview of the Request Process

1. Build request
• Method
• URL
• Headers
• Body
• Authentication

2. Send request
3. Evaluate response

• Response code
• Desired data features

Build
Request

Components

Send
Request

Evaluate
Response

50© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM REST API
2.4 LAB1 : Getting a Service Ticket with Python

2.4.1 Use POSTMAN to get Service Ticket

2.4.2 Use Python to get Service Ticket

51© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Python IDLE

52© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Python dictionary
 ipAddress = {"R1":"10.1.1.1","R2":"10.2.2.1","R3":"10.3.3.1"}

print(ipAddress["R1"])
10.1.1.1

ipAddress["R1"]="10.0.0.1"

Python for loop
 devices=["R1","R2","R3","S1","S2"]
 for item in devices:

print(item)

53© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 1: Getting a Service Ticket with Python

1. Document code with initial comment block.
2. Import required modules: json and requests
3. Disable SSL certificate warnings

"""
01_get_ticket.py
This script retrieves an authentication token from APIC-EM and prints out
it's value. It is standalone, there is no dependency.
MBenson
11/12/2017
"""
import json
import requests

requests.packages.urllib3.disable_warnings()

54© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

post_url = 'https://sandboxapicem.cisco.com/api/v1/ticket'

headers = {'content-type': 'application/JSON'}

body_json = {
 'username': 'devnetuser',
 'password': 'Cisco123!'
}

Lab 1: Getting a Service Ticket with Python:
Build the Request Components

Note: This is exactly what we provided to Postman for the request.

1. Create a string variable for URL.Create a string variable for URL.

2. Create header.

3. Provide body requirements.

1. Create a string variable for URL.

2. Create header.

3. Provide body requirements.

55© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1. Create a Python object to hold the response to the
request.

2. Provide the variables for the request to the POST method
of the requests module.

3. json.dumps() encodes a Python object as JSON.
This line of code sends the request using a POST method to the URL of APIC-
EM ticket endpoint. The response that is returned by the API is stored in the
resp variable.

resp = requests.post(post_url, json.dumps(body_json),headers=headers,verify=False)

Lab 1: Getting a Service Ticket with Python:
Send the Request

56© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

About the JSON

response_json = resp.json()
serviceTicket = response_json['response']['serviceTicket']

https://codebeautify.org/jsonviewer

57© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 1: Getting a Service Ticket with Python:
Evaluate the Response

1. Create object with response code of request.
2. Display response code.
3. Decode the JSON resp variable into a python object and store in response_json

object.
4. Extract the service ticket value from the object.
5. Display service ticket value.
6. Save your file as get_ticket.py and run the code.

status = resp.status_code
print ("Ticket request status: " + status\n)

response_json = resp.json()

serviceTicket = response_json['response']['serviceTicket']

print("The service ticket number is: " + serviceTicket)

58© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 1: Getting a Service Ticket with Python:
Create a Function from the Program

You will convert your program into a function that can be reused in the
future. It will go into a file of APIC-EM utility functions called
my_apic_em_functions.py

Requirements for the function:
1. Defined with def get_ticket()
2. All subsequent lines of code indented an additional four spaces.
3. Function should return the service ticket number for use in other

programs.
return serviceTicket

59© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• We will create a small program that requests and displays a table of
hosts on the network. We convert this to a function and add it to our
functions file.

• We will reuse code to create a small program that requests and
displays a table of network devices on the network. We convert this to
a function and add it to our functions file.

• We will complete code in the Path Trace application and use our
functions in that program.

What's next?

60© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM REST API
2.5 Lab 2 : Create a host inventory in Python

2.5.1 Use POSTMAN to get host inventory
2.5.2 Use Python to get host inventory

61© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

add your service
ticket number

/host API endpoint/host API endpoint/host API endpoint

add new
tab

Step 1 : Setup the Postman Request

1.1.1. Create a new tab select the method, URI, and Content-Type.Create a new tab select the method, URI, and Content-Type.Create a new tab select the method, URI, and Content-Type.
2. Run the Postman tab that obtains a service ticket.
3. Build the REST header with Content-Type and service ticket

number as the value for X-Auth-Token
4. Send request, view response.

1. Create a new tab select the method, URI, and Content-Type.
2. Run the Postman tab that obtains a service ticket.
3. Build the REST header with Content-Type and service ticket

number as the value for X-Auth-Token
4. Send request, view response.

62© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

We want to display a small table of
hosts, including the hostIP and
hostType values for each host.

Explore the Response JSON

response[0]['hostIP']
response[0]['hostType']

Step 2 : Evaluate the Response

63© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM REST API
2.5 Lab 2 : Create a host inventory in Python

2.5.1 Use POSTMAN to get host inventory
2.5.2 Use Python to get host inventory

64© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 2 : Create Host Inventory in Python
'''
02_get_host.py
gets an inventory of hosts from \host endpoint
November, 2017
'''
import requests
import json
import sys
from tabulate import *
from my_apic_em_functions import *

1. Document
2. Import required modules

Note that the Python file that contains your service ticket function is
imported for use here. The name of the functions file will vary depending
on whether you are using your own file or the provided solution file.

65© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 2 : Create Host Inventory in Python
Build Request Components

post_url = "https://sandboxapicem.cisco.com/api/v1/host"

ticket = get_ticket()
headers = {'content-type':'application/json','X-Auth-Token':ticket}

Note that the get_ticket() function that you created earlier is reused
here and the value is supplied to the headers object.

66© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 2 : Create Host Inventory in Python
Make the Request and Handle Errors

try:
 resp = requests.get(post_url,headers=headers,params='',verify = False)
 response_json = resp.json() # Get the json-encoded content from response
 print ('Status of /host request: ',str(resp.status_code))
except:
 print ('Something is wrong with GET /host request!')
 sys.exit()

1. Request is made with get() method of the requests module.
2. A try: except: structure is used to handle errors. If an exception

is encountered in the try: code, the except: code executes.
3. Messages are displayed for the status of the request.

67© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 2 : Create Host Inventory in Python
Evaluate the Response

host_list=[]
i=0
for item in response_json['response']:
 i+=1
 host_list.append([i,item['hostType'],item['hostIp'])

print (tabulate(host_list,headers=['Number','Type','IP'],tablefmt="rst"))

1. The for: loop iterates through the objects in response_json[response] key,
which corresponds to each host.

2. The data for the host is put in the variable item.
3. This variable contains all the keys for the host.
4. We extract the "hostType", and "hostIp" for each host.
5. Each iteration of the loop appends this information to a new line in the variable.
6. We pass the host_list variable to tabulate to be formatted and print the result.

68© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 2 : Create Host Inventory in Python
Create the Function

def get_host():
 post_url = "https://sandboxapicem.cisco.com/api/v1/host"

 ticket = get_ticket()
headers = {"content-type" : "application/json","X-Auth-Token": ticket}

 try:
 resp = requests.get(post_url,headers=headers,params="",verify = False)
 response_json = resp.json()

print ("Status of /host request: ",str(resp.status_code))
 except:
 print ("Something is wrong with GET /host request!")
 sys.exit()

host_list=[]
 i=0
 for item in response_json["response"]:
 i+=1
 host_list.append([i,item["hostType"],item["hostIp"]])

 print (tabulate(host_list,headers=['number','type','host IP'],tablefmt='rst'))

1. Copy your program
into the functions file.

2. define the function as
get_host()

3. Indent everything by
four additional spaces

4. Save the functions file.

69© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM REST API
2.6 Lab 3 : Create a network-device inventory in Python

70© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1. Save your get_host.py file as get_device.py.

2. Go to the APIC-EM GUI and open the Swagger page for the
inventory/network-device

3. Click try it and look at the returned JSON.

4. We want to access and print 'type' and 'managementIpAddress'
instead of "hostType" and "hostIpAdress".

5. Inspect the code and make the substitutions everywhere they are
required.

6. Save the file and test. Add the function get_device() to your
functions file.

Lab 3: Create a Network Device Inventory in Python
Replicate your work for the /network-device Inventory endpoint.

71© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2.0 Programming the APIC-EM REST API
2.6 Lab 4 : Path Trace Application

72© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

The Path Trace Application
1. Open and run the 04_path_trace_sol.py file.
2. From the list of devices, enter source and destination IP

addresses.
3. The application does the following:

a) Obtains a service ticket from the APIC-EM /ticket endpoint.
b) Obtains and displays an inventory of hosts from the /hosts endpoint
c) Obtains and displays an inventory of network devices from the

/network-devices endpoint
d) Requests source and destination IP addresses for the Path Trace

from the user.
e) Requests the Path Trace from the /flow-analysis endpoint.
f) Monitors the status of the Path Trace until it is complete.
g) Displays some of the results of the completed Path Trace.

4. We are going to build this!

73© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• You will work from partially completed code in the
04_path_trace.py file.

• Copy and paste from what you have already completed.

• Consult the solution files.

• Seek assistance from the workshop community if you are
stuck.

• Coders collaborate, so should you!

Lab 4: Coding the Path Trace Application: Process

74© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Coding the Path Trace Application:
About the working code file
• Open the 04_path_trace.py work file in IDLE.
• The code is divided into six sections. The lab references each

section.
• You are directed to complete or supply statements in the code.
• Some material is new. The lab document provides information

regarding what is required.
• You are working on a functioning application. Sometimes it is

necessary to use code that is more advanced than your current skill
level. You are not expected to understand that code, although it can
be explained at a later time if you wish.

75© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

• In IDLE, create a new Python file called test.py.

• Save it in the same folder as your other lab files.

• As you complete a section of code, copy and
paste it into this file, save, and run it.

Lab 4: Coding the Path Trace Application:
Testing your code…

76© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace Code: Section 1: Setup
the Environment

#==
Section 1. Setup the environment and variables required
to interact with the APIC-EM
#===
#+++++++++++Add Values+++++++++++++++
#import modules

#disable SSL certificate warnings

#++++++++++++++++++++++++++++++++++++

#+++++++++++Add Values+++++++++++++++
Path Trace API URL for flow_analysis endpoint
post_url = #URL of API endpoint
Get service ticket number using imported function
ticket = # Add function to get service ticket
Create headers for requests to the API
headers = # Create dictionary containing headers for
the request
#++++++++++++++++++++++++++++++++++++

post_url = post_url =

ticket = # Add function to get service ticketticket = # Add function to get service ticket

headers = # Create dictionary containing headers for headers = # Create dictionary containing headers for

Add code where
indicated to setup the
code environment and
build the request
components.

77© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Use your get_host()
and get_devices()
functions here.

Lab 4: Path Trace
Code Section 2: Display list of hosts and devices

#============================
Section 2. Display list of devices and IPs by calling
get_host() and get_devices()
#============================

#+++++++++++Add Values+++++++++++++++
print('List of hosts on the network: ')
Add function to display hosts

print('List of devices on the network: ')
Add function to display network devices

#++++++++++++++++++++++++++++++++++++

print('List of devices on the network: ')

78© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
Code Section 3: Get Source and Destination IP Addresses from User

while True:
#+++++++++++Add Values+++++++++++++++
s_ip = # Request user input for source IP address
d_ip = # Request user input for destination IP address
#++++++++++++++++++++++++++++++++++++
#Various error traps should be completed here - POSSIBLE CHALLENGE

if s_ip != '' or d_ip != '':
path_data = {

 "sourceIP": s_ip,
 "destIP": d_ip
 }

break #Exit loop if values supplied
else:

print("\n\nYOU MUST ENTER IP ADDRESSES TO CONTINUE.\nUSE CTRL-C TO QUIT\n")
continue #Return to beginning of loop and repeat

s_ip = s_ip =
d_ip =
#++++++++++++++++++++++++++++++++++++
d_ip =
#++++++++++++++++++++++++++++++++++++#++++++++++++++++++++++++++++++++++++

variable = input("prompt: ")

79© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
Code Section 4: Initiate the Path Trace and get the Flow
Analysis ID
#============================
Section 4. Initiate the Path Trace and get the flowAnalysisId
#============================

#+++++++++++Add Values+++++++++++++++
Post request to initiate Path Trace
path = #Convert the path_data to JSON using json.dumps()
resp = #Make the request. Construct the POST request to the API

Inspect the return, get the Flow Analysis ID, put it into a variable
resp_json = resp.json()
flowAnalysisId = # Assign the value of the flowAnalysisID key of resp_json.
#+++++++++++++++++++++++++++++++++++++

print('FLOW ANALYSIS ID: ' + flowAnalysisId)

path = path =

flowAnalysisId = # Assign the value of the flowAnalysisID key of resp_json.flowAnalysisId = # Assign the value of the flowAnalysisID key of resp_json.

resp = resp =

80© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
Code Section 5: Check status of Path Trace request - 1

#============================
Section 5. Check status of Path Trace request, output results when
COMPLETED
#============================

#initialize variable to hold the status of the path trace
status = ""

#+++++++++++Add Values+++++++++++++++
#Add Flow Analysis ID to URL in order to check the status of this
specific path trace
check_url = #Append the /flowAnalyisId to the flow
analysis end point URL that was created in Section 1
#++++++++++++++++++++++++++++++++++++

check_url = check_url =

81© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
Code Section 5: Check status of Path Trace request - 2
checks = 0 #variable to increment within the while loop. Will trigger exit from loop after x iterations

while status != 'COMPLETED':
checks += 1
r = requests.get(check_url,headers=headers,params="",verify = False)
response_json = r.json()
#+++++++++++Add Values+++++++++++++++
status = # Assign the value of the status of the path trace request from response_json
#++++++++++++++++++++++++++++++++++++

#wait one second before trying again
time.sleep(1)
if checks == 15: #number of iterations before exit of loop; change depending on conditions

print('Number of status checks exceeds limit. Possible problem with Path Trace.')
#break
sys.exit()

elif status == 'FAILED':
print('Problem with Path Trace')
#break
sys.exit()

print('REQUEST STATUS: ' + status) #Print the status as the loop runs

status = status = # Assign the value of the status of the path trace request from response_json
#++++++++++++++++++++++++++++++++++++

82© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
Code Section 5: Check status of Path Trace request - 3
JSON Status Key

response_json["response"]["request"]["status"]

83© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
Code Section 6: Display Results
#============================
Section 6. Display results
#============================

Create required variables
#+++++++++++Add Values+++++++++++++++
path_source = #Assign the source address from the trace from response_json
path_dest = #Assign the destination address from the trace from response_json
networkElementsInfo = #Assign the list of all network element dictionaries from response_json
#+++++++++++++++++++++++++++++++++++++

#Assign the list of all network element dictionaries from response_json#Assign the list of all network element dictionaries from response_json

Supplying these values requires parsing the Path Trace JSON that
is has been converted to Python objects and is stored in
response_json. We will explore an example of the Path Trace
JSON now.

path_source = #Assign the source address from the trace from response_jsonpath_source = #Assign the source address from the trace from response_json

84© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

1. Open the json_data.json file that is in the folder with
the lab Python files.

2. Copy the entire contents of the file.

3. Open JSON Viewer and paste the JSON in the left-hand
pane.

4. View as a tree.

5. Collapse all levels.

Lab 4: Path Trace
JSON Practice - View Tree

85© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4 Path Trace: JSON Practice - Tree View

86© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: Path Trace
JSON Practice - Load Variables

1. Import the json module.
2. Open the path_trace_json.json file, convert it to Python objects, and

assign the result to a variable called json_data as shown above.
3. Save and run the program.
4. Display the contents of json_data in the shell. This is what the imported

and converted JSON looks like to Python
5. Display the values of different keys in the json. Example:

print(json_data['response']['request'])

import json
json_data=json.load(open('path_trace_json.json'))

>>> print(json_data)

87© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Lab 4: JSON Practice - Accessing Data in the
Response

json_data['response']['networkElementsInfo'][2]['ip']json_data['response']['networkElementsInfo'][2]['ip']json_data['response']['networkElementsInfo'][2]['ip']

json_data['response']['request']['sourceIP')json_data['response']['request']['sourceIP')json_data['response']['request']['sourceIP')

json_data['response']['request']['destIP']json_data['response']['request']['destIP']json_data['response']['request']['destIP']

json_data holds the converted JSON reply from
the Path Trace endpoint that is represented in the
JSON Viewer tree.

88© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

APIC-EM Tools Github Collection

88

Can be imported into Postman
as files, or directly from URLs.
See the README.md file for
more information.

Note: Before posting any code your
own repository, remove any
confidential information from the code
and replace it with comments or
descriptive placeholder text.

https://github.com/CiscoDevNet/apic-em-samples-aradford/tree/master/tools/postman

89© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Next steps…

• Go to DevNet and investigate:
• The DevNet Cisco Community

• The DevNet Introduction to DevNet interactive course track

• The APIC-EM Sandbox and Swagger API documentation

90© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Thank you for attending the
workshop!

