Stichting NIOC

Stichting NIOC en de NIOC kennisbank

Stichting NIOC (www.nioc.nl) stelt zich conform zijn statuten tot doel: het realiseren van
congressen over informatica onderwijs en voorts al hetgeen met een en ander rechtstreeks of
zijdelings verband houdt of daartoe bevorderlijk kan zijn, alles in de ruimste zin des woords.

De stichting NIOC neemt de archivering van de resultaten van de congressen voor zijn rekening.
De website www.nioc.nl ontsluit onder "Eerdere congressen” de gearchiveerde websites van
eerdere congressen. De vele afzonderlijke congresbijdragen zijn opgenomen in een kennisbank
die via dezelfde website onder "NIOC kennisbank" ontsloten wordt.

Op dit moment bevat de NIOC kennisbank alle bijdragen, incl. die van het laatste congres
(NIOC2025, gehouden op donderdag 27 maart 2025 jl. en georganiseerd door Hogeschool
Windesheim). Bij elkaar zo’n 1500 bijdragen!

We roepen je op, na het lezen van het document dat door jou is gedownload, de auteur(s)
feedback te geven. Dit kan door je te registreren als gebruiker van de NIOC kennisbank. Na
registratie krijg je bericht hoe in te loggen op de NIOC kennisbank.

Het eerstvolgende NIOC vindt plaats in 2027 en wordt dan georganiseerd door HAN University
of Applied Sciences. Zodra daarover meer informatie beschikbaar is, is deze hier te vinden.

Wil je op de hoogte blijven van de ontwikkeling rond Stichting NIOC en de NIOC kennisbank,
schrijf je dan in op de nieuwsbrief via

www.nioc.nl/nioc-kennisbank/aanmelden nieuwsbrief

Reacties over de NIOC kennisbank en de inhoud daarvan kun je richten aan de beheerder:

R. Smedinga kennisbank@nioc.nl.

Vermeld bij reacties jouw naam en telefoonnummer voor nader contact.

Versiedatum: 02-04-2023

Athena, alarge scale programming lab support tool
Anton Jansen, University of Groningen, The Netherlands
Abstract

Providing a programming lab to a large group of students requires a lot of effort. Often in these
cases additional staffing is required to provide students with enough feedback on their work. However,
due to resource constraints this is not always possible. This paper presents Athena, a lab support
tool that reduces the effort required for programming labs and provides students with adequate and
timely feedback. Athena reduces the need for additional staffing and provides students with a better
learning experience. Furthermore, it allows for new educational forms for large student groups like

programming lab exams.

Keywords: Programming labs, automated testing

1 Introduction

A programming cours is often supported by one or
more programming labs. The exercise(s) of the labs
are meant to teach students the skill of program-
ming and the concepts of a certain programming
paradigm. For large groups of students, the lab part
of a programming course becomes laborious. This
is mainly due to the fast amount of review work that
needs to be done to provide students with feedback
on their work.

In this paper, Athena is presented. Athena is a
system that supports large scale programming labs
and reduces the effort required to run such labs.
Athena achieves this by automating certain labo-
rious administrative tasks and by providing auto-
mated feedback towards the students on their work.
The benefits of Athena are twofold: it reduces the
need for additional staffing and provides a better
learning experience for students.

The contribution of this paper consists of three
parts. First, it introduces the Athena system and
argues for the two aforementioned benefits of im-
proved learning and reducing effort. Second, it
provides considerations and guidelines how Athena
can be integrated into programming courses. Third,
it presents an in-depth evaluation of the pro’s and
con’s of a support system like Athena.

The rest of this paper is organized as follows.
First, a closer look is taken at programming courses,
programming labs, and their laborious tasks. Next
in section 3, Athena is introduced. Section 4 ex-
plains how Athena can be used in programming

courses. After which the paper presents an overview
of the lessons learned in section 5 and concludes in
section 6 with conclusions.

2 Programming courses

Programming can be learned in many different
ways. In this section, a look is taken at super-
vised learning in the form of programming courses.
Two different strategies of teaching programming
courses can be identified: the algorithm perspective
and the component perspective.

In the algorithm perspective, the focus is on
learning students to think in steps to build up an
algorithm for a particular problem. On the other
hand, in the component perspective the focus is on
how predefined functionality (e.g. algorithms) in the
form of components can be composed together to
form an application.

However, both strategies try to achieve similar
goals. Programming courses are not meant to learn
a particular programming language to a student, but
more the concepts behind a particular programming
language paradigm. For example, in Object Ori-
ented Programming (OOP) the concepts of methods
and inheritance, in functional programming the con-
cept of folding.

Programming courses additionally teach stu-
dents to make transformations from the problem do-
main (the real world) to the solution domain (a pro-
gramming paradigm). For example, analytic, prob-
lem solving, and divide & conquer techniques can
be learned to ease this difference in worlds between

83

Athena, a large scale programming lab support tool — Jansen

computers and the real world.

Furthermore, programming courses try to de-
velop the student’s sense for good and bad program-
ming practices. This includes considerations of aes-
thetics, quality, and trade-offs made. Students need
to become aware of these issues and have the ability
to discuss and reason about them.

Learning how to program is a difficult and time-
consuming process. The main reasons for this are:
(1) the abstract nature of, (2) the required precision
for, (3) and the skill required, to use concepts of
programming languages. So how can we deal with
these problems in a programming course?

‘ Feedback
Exercise Students Program Teacher

Figure 1: Programming labs

Many teachers use the solution to have a series
of programming labs associated with their program-
ming course. In these programming labs, program-
ming exercises are used to train students in program-
ming. The exercises are meant to train the students
in putting the theoretical knowledge of program-
ming concepts and combinations of them into prac-
tice. Often there is a need to have many small exer-
cises to train concepts in isolation, before complex
and particular combinations are tried.

In figure 1, the process of a programming lab is
depicted. First, one or more exercises are defined
by a teacher. They serve as the main input for the
students. It is the student task to make a program as
described in the exercise. This program is commu-
nicated to a teacher, which reviews and/or grades the
program. The remarks of the teacher are communi-
cated back to the students as feedback.

Reviewing and/or grading student programs for
these exercises is a time-consuming job. The main
reason for this is the sheer amount of code that needs
to be examined. For example, 60 students are more
than capable of writing over 7500 Lines Of Code
(LOC) in a time span less than 3 hours for some

small exercises. For large groups of students, the
amount of review work can become so great that it
prohibits a timely feedback from the teacher(s) to-
wards the students. Consequently, the learning ex-
perience of the students becomes less than optimal
in these cases.

For large groups of students, there is a clear need
for more staffing to prevent such situations. How-
ever, due to resource constrains this is not always
possible or economical feasible. Consequently, a
different approach is needed for large groups, which
reduces effort for a teacher, but does not compro-
mise the learning experience of the student.

3 Athena

Athena is a computer system to support large scale
programming labs. It reduces the required effort
for a teacher to run these labs, while enriching the
students learning experience. Figure 2 presents an
overview of how programming labs with the sup-
port of Athena work. The main difference with the
process of normal programming labs (see figure 1)
is the additional feedback to students and filtering of
information to the teacher.

Feedback

Feedback

REY ==

Exercise Students Program

Teacher

Athena

Figure 2: Programming labs with Athena

In the rest of this section, different aspects of
Athena are presented. First, section 3.1 outlines the
basic working process of Athena and it’s supporting
tools. Next, section 3.2 takes a closer look at the au-
tomated testing facilities of Athena, which creates
the additional feedback towards the students.

84

NIOC 2004 proceedings

3.1 Athenasystem

The basic working process of Athena (see figure
2) consists of students submitting their work to the
Athena system using the submission client (see fig-
ure 3). The submitted work is automatically tested
by the arbiter, which provides the additional feed-
back to the students using the student web interface.
The teacher can examine the submitted work and
configure the automated testing by the use of the
Athena management tool (see figure 4). Following
is a more detailed description of these supporting
tools and their function:

LA SBUTETTISITII BE) DTFIOT PLATET PWe PS8 § B 251107 SrLoN B AT e ETTiE U}

/wingt /home/anton /KingsParty java =
Practicum 1 v
Driehoek -
Deadline: 2005-04-04 15:27:180
arnon |ansen
Arend Smit

Add Remove Add Remove
Submit Exit

Figure 3: The submission client

Submission client The submission client (see fig-
ure 3) is a stand-alone Java application, which stu-
dents use to submit their work to the Athena sys-
tem. The student can select the files or directories
containing their solution. To reduce garbage a fil-
ter can be defined, which filters out unwanted mate-
rial (e.g. binaries). Optionally, in the case of group
work, the student can select on or more fellow stu-
dents that are responsible for the submitted work as
well. This relieves the staff of the burden to main-
tain a proper group administration. For large groups
of students this turns out to be a time-consuming and
error-prone task, as groups tend to change quite of-
ten due to sickness, dropouts, and arguments among
students.

Arbiter The arbiter is the heart of the Athena sys-
tem, as it judges the submissions automatically. For
each exercise that should be automatically tested, a

testset consisting of one or more tests is defined in
Athena. The arbiter executes these various tests and
collects the result in a judgement about the submis-
sion. An elaborate description of the various means
to test is presented in section 3.2.

Student webinterface Students receive the feed-
back from the Athena system through the student
webinterface [Athena website]. This web-based in-
terface provides a student with an overview of his or
her submissions and their status in the Athena sys-
tem. Futhermore, the judgement (created by the ar-
biter) can be examined. It includes detailed informa-
tion about the executed tests, their results, expected
results, and additional hints defined by the teacher.

Management tool The management and configu-
ration of the various elements of Athena is done in
the management tool (see figure 4). This tool allows
teachers to configure the Athena system to their
needs and manage their programming courses. For
example, managing deadlines, creating and modify-
ing courses and exercises, and printing and reporting
are done using the management tool.

amam =

Figure 4: The management tool

3.2 Automated testing

The automated testing system of the arbiter is the
heart of the Athena system. It generates the ad-
ditional feedback for the students (see figure 2),
thereby reducing the burden on the staff. Athena
provides a testing environment as opposed to a sin-
gle testing framework, as Athena needs to be pro-

85

Athena, a large scale programming lab support tool — Jansen

gramming language and platform independent. In
this testing environment, different testing frame-
works are specified for the different combinations
of programming languages and platforms.

Bl e sl i yaldibsll

] S
Chapter Practicum | dinsdag
Assignments
Winkelen
Accented by defonlt 1130030+ 13:31:00.0

Multiplies

o judgements are availoble yel

Hello workd

Figure 5: Student webinterface

Teachers configure a testing framework in the
management tool to define an automated test for
their particular exercise. Testing frameworks have
been defined and used for multiple programming
languages, which include frameworks for Modula-
3, Pascal, Java, and C.

The test environment of Athena provides an in-
frastructure for the testing frameworks to report
their findings to the system and optionally back to
the student. Consequently, the Athena is completely
programming language independent and therefore
could be used for functional and logic programming
languages as well.

Various testing techniques can be used in
Athena. The following list gives an overview of the
techniques, which have been used in Athena:

Don’'t doit From experience, we have learned that
it is sometimes convenient not to test at all. Conse-
quently, the Athena system then becomes an admin-
istration tool, which is specialized for programming
COurses.

Compile The work of the student is tested with a
compiler to see whether it compiles or not. Op-
tionally, warnings of the compiler can be allowed

or disallowed. Surprisingly enough, many submis-
sions fail to pass this test, due to small mistakes that
are very hard to detect by a human.

Run The compiled work of the student is run to see
whether it does not generate any run-time anomalies
(e.g. segmentation faults, out-of-bounce exceptions
etc.). Furthermore, it can be tested whether the pro-
gram ends in a predefined time, to have an indication
for end-less loop constructs.

Output The generated output of a student program
on a given input can be automatically tested as well.
The used options in Athena frameworks for output
testing include:

e Textual The output of the student program is
textual compared to the output of a reference
program or a predefined output. Texts can be
compared in numerous ways, the one used often
in Athena is a context difference, which ignores
whitespace (i.e. spaces and tabs).

e Numerical When the output consists of num-
bers, numerical tests can be made. The numbers
of the student can be compared against prede-
fined numbers or numbers generated by a ref-
erence solution. Depending on the absolute or
relative difference the test can bet set to fail or
succeed.

e Dedicated A special made program could be
used to test the student program and interpreted
the generated output in a domain specific way.
For example, an application that automatically
tests whether a circle is drawn on the screen by
the application.

Performance The performance of the student pro-
gram can be measured in time, memory usage, etc.
In the use of Athena, this is primarily used to auto-
matically test whether the student uses a particular
efficient algorithm (e.g. quicksort).

Student The idea is here to let the students make
the test themselves in a predefined testing frame-
work. For example, Athena has a JUnit [JUnit] test-
ing framework. This allows students to test their
own Java application in a uniform way. The edu-
cational benefit is that students are forced to think

86

NIOC 2004 proceedings

about testing, which is an inherent part of software
development. The teacher now only needs to check
the coverage of the testset of a student to ensure
functional correctness.

4 Courseswith Athena

In the previous section, the Athena system was in-
troduced. This section presents how the Athena sys-
tem can be integrated into programming courses and
the consequences of this integration.

Although testing is regarded in software engi-
neering as a crucial process to insure quality, most
programming courses regard it as a separate topic,
which lies often out of scope. If the automated
testing facilities of Athena are used in a program-
ming course, testing becomes an inherent part of the
course. However, for automated testing to work in a
course, a couple of issues need to be dealt with:

Interactions with the environment This is the
most constraining, hard, and often an impossible
aspect to achieve. For automated testing the inter-
action between the student program and its environ-
ment needs to be specified. Otherwise, the testing
cannot be automated.

Transforming an idea to an exercise text that defines
these required interactions proves far from trivial.
The level of detail required prohibits exercises using
many different types of interactions. Furthermore,
the “catch” of some exercises lies in these interac-
tions. Specifying them in the exercise text destroys
the purpose of the exercise, as it gives the “catch”
away.

Several strategies exist to ease interaction with the
environment. The easiest and most often employed
one is to provide examples of the intended interac-
tion. A more specialized strategy is to provide the
student with a framework, which already takes care
of these issues. However, learning the framework
takes time and requires knowledge sometimes not
available to the students (e.g. in a starters program-
ming course), therefore this strategy is not always
a viable option. Another strategy is not to specify
these interactions beforehand. This prevents testing

of predefined tests, but still allows students to make
their own testset (see 3.2).

Accuracy The texts of an exercise need a high de-
gree of accuracy to prevent ambiguity. As ambigu-
ous situations makes automated testing for these
cases near to impossible. Furthermore, to deal with
the issue of the previous point the interaction with
the environment needs to described accurate and in
detail.

Covering and incremental testset To benefit from
the automated testing facilities of Athena a good
testset is required. A good testset for exercise cov-
ers the various issues of an exercise. Furthermore,
it is defined in an incremental way, such that first
some trivial cases are tested, after which the more
complex ones come. This is needed to make the re-
lationship between the tests and the student program
clear, thereby providing a smooth learning path. Of-
ten tests are made to check whether the wrong con-
ceptual solution has been chosen. Feedback associ-
ated with these tests are defined to include instruc-
tions or remarks what the conceptual mistake likely
would have been.

Reference solution Determining the coverage and
suitability of a testset is difficult. Furthermore, ex-
perience learns that many mistakes are made in the
definition of a test. A reference solution is there-
fore a crucial tool to test the testset and to provide
validation of the suitability of the exercise.

The issues presented make the initial effort to define
an exercise for automated testing significant higher
than without. An automated testing environment
like Athena pays-off in the correction phase. In
courses using Athena, only submissions that have
passed the testset are corrected and graded by the
teacher. This significantly reduces the effort, as the
teacher can assume the functional correctness of the
student work.

Athena allows for new forms of benchmarking
student performance. Programming exams can be
held in which students get a fixed amount of time
(e.g. 3 hours) to solve as many exercises as they can.
The focus of the exam is to test the student’s skill in
using and applying a programming language, rather

87

Athena, a large scale programming lab support tool — Jansen

than the theoretical knowledge about a language
tested with traditional paper and pencil exams.

5

L essonslearned

Athena has been in use since 2001 for 3 or 4 dif-
ferent courses each year. Over 1000 different stu-
dents from 4 different faculties have used the system
so far. In this section, the experiences and lessons
learned during this time are presented. First, the
positive and negative sides are presented from the
perspective of a student, after which the same is
done for the teacher. From a student perspective,
there are the following observations:

- Hard, competitive Submitted work of a stu-
dent is only graded once it passes the auto-
mated tests. This makes the system very harsh
towards students, as there is no consideration
of (inadequate) work that has not passed the
testset. This hardness also creates a competi-
tive atmosphere, as students compare their re-
sults, which are instantly available.

Fraud The hardness of the automated testing
makes the temptation to fraud bigger. The
large number of students for which Athena is
used complicates the detection of such cases.

+ Precise working attitude The automated

testing part of Athena encourages students to
pick up a precise working attitude. The feed-
back of the testing systems confronts the stu-
dent with mistakes of their program, indepen-
dent of how small and trivial they might be.

+ Objective Athena’s automated testing is ob-

jective, as opposed to the manual check-
ing of functional correctness by a group of
teachers. Each teacher has it’s own way
of finding flaws within a program. Conse-
quently, this can leads to situations where a
certain type of fault is detected by one, but
not by the others. Hence, the determination
of functional correctness becomes subjective.
To fight this subjectivity, considerable effort

needs to be spent in harmonizing and commu-
nicating functional correctness requirements,
something that is not needed in Athena.

+ Learning experience The fast feedback of

the system provides a better learning experi-
ence for students. No longer, they have to wait
one or two weeks to get (detailed) feedback
on their work. The provided feedback can be
directly used in the same lab sessions. This
prevents situations where a student makes the
same systematic mistake during several lab
sessions, as the grading process often fails to
match the lab sessions pace. Furthermore, the
quality of the student work has been signifi -
cant higher than in cases where Athena is not
used.

There are also some lessons learned from a teacher
perspective:

- Reduced exercise freedom As already
pointed out in section 4, the use of automated
testing constrains potential exercises.

- Dependability The automated testing of
Athena makes a course very dependent on
a specific system environment. Ideally,
the development environment of the student
matches the testing environment, as a detected
fault then can be replicated by the student.
Our experience has learned there can arise
many subtle differences due to a different
mix of compiler and libraries versions, oper-
ating systems, access rights, and other system
variables. Furthermore, these environments
evolve, thereby sometimes requiring evolu-
tion of the testset of an exercise as well.

+ Quality of grading As the Athena system

handles the functional aspect of the student
work, the focus of grading shifts from func-
tionality correctness to quality aspects of the
work.

+ Savestime Although the initial investment is

high to setup a course with Athena, the invest-
ment pays off for large groups. The automat-

88

NIOC 2004 proceedings

ing of part of the administration and the au-
tomated testing saves time. The break-even
point lies around groups of 40 students. If a
course in can be reused for several years, this
number can get as low as 25.

+ Scalability An advantage of Athena is its
scalability. Courses with over 160 students
participating use Athena. The staffing for the
weekly labs of these courses consists of three
teaching assistants working 8 hours a week.
Only additional computers are needed to en-
sure fast feedback from the automated testing.

6 Conclusions

Programming labs are an essential part of program-
ming courses. The exercises used in programming
labs provide students with insight into the workings
of the concepts of a programming paradigm. Fur-
thermore, students learn to use a particular program-
ming language, thereby training their programming
skills.

An important part of the learning experience
of students is the feedback they receive from the
teacher on their work on the exercises. For large
groups of students providing this feedback can be-
come a problem. The review work becomes so great
for a teacher that it no longer can be provided on
time. Consequently, the learning experience for stu-
dents becomes less than optimal.

This paper presented Athena, a support tool for
large scale programming labs. Athena automates
common administrative tasks like group lists, dead-
line management, result administration, and print-
ing of student programs. Furthermore, Athena au-

tomatically determines the functional correctness of
the work of students using automated testing.

The automated testing facilities of Athena im-
prove the student learning experience, as more and
timely feedback can be provided to the student.
Furthermore, the automated testing significantly re-
duces the review time of a teacher. Athena takes
care of the functional part of the student work. Con-
sequently, a teacher can spend his or her precious
time on reviewing the non-functional quality aspects
(e.g. coding style and documentation).

Both automation of administrative tasks and the
automated testing facilities significantly reduce the
required effort from teacher(s) for large groups of
students. As the initial effort required to define the
necessary tests for automated testing is relative high,
Athena starts paying off for groups larger than 40
students. This is especially the case if the course is
used for more than a single occasion.

Further work on Athena includes the integration
of a fraud detection system (e.g. Moss [Moss]). Es-
pecially for large groups of students this will fight
the temptation for students to commit fraud. In ad-
dition to fraud detection, further work is needed at
easing deployment of Athena. Currently, there is no
nice installation procedure for the different user ap-
plications. This is something that needs to be devel-
oped to make Athena easier deployable for others.

References
[Athena website] http://athena.wing.rug.nl:8080
[JUnit] http://www.junit.org

[Moss] http://www.cs.berkeley.edu/aiken/moss.html

89

